CELPHEDIA, the French national reference infrastructure for animal research on rare diseases

P. Schmitt¹, G. Pavlovic², I. Anegon⁶, J.P. Concordet³, C. Frémont², C. Giovannangeli³, S. Guerder⁴, J.S. Joly³, J. Marvel⁵, B. Malissen², O. Neyrolles⁴, F. Sohm³, Y. Hérault^{1,2}.

¹CELPHEDIA, CNRS, www.celphedia.eu/, Illkirch, France; ²PHENOMIN, www.phenomin.fr/, Illkirch, France; ³TEFOR, www.tefor.net/, Gif-sur-Yvette, France; ⁴Anexplo, US006/Crefre UMS INSERM-IPBS CNRS, Toulouse, France; ⁵AniRA, UMS3444/US8 SFR-BioSciences Gerland - Lyon Sud, Lyon, France; ⁶TRIP, UMR 1064 INSERM/UMS 3556 CNRS, Nantes, France

The most appropriate animal model to accelerate the comprehension of our genome and human diseases

With 13 centers throughout France, CELPHEDIA has developed innovative, standardized and massively parallel technological approaches to:

- accelerate the comprehension of the genome
- generate models of human diseases
- promote therapeutic innovations through the validation of molecular targets

An unique access to 3 major families of model organisms allowing the selection of the most appropriate model to answer the questions of modern biology

Involvement in European and international projects

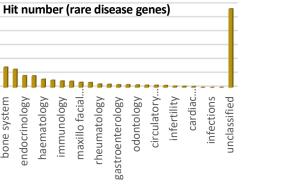
Celphedia

Distributed French infrastructure Reference center fo

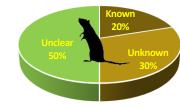
1000

800

600 400


phenomin

INFRAFRONTIER European network 💳 distribution of


International consortium of mouse phenotyping 9 countries

To undertake broad based primary phenotyping of about 20,000 mutants

 To determine the function of every gene in the mouse genome

Mouse gene functions

targeted mutagenesis: constitutive and

conditional knock-out, knock-in,

conditional mutations, structural

pronuclear injection and CRISPR/Cas9

genome editing in mouse and rat

variants...

ES cells in mouse

Zebrafish as a model of human rare disease

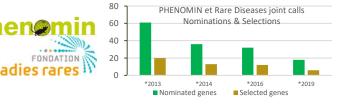
Bethlem's myopathy: an incurable human collagen VI disease. The zebrafish GA line was obtained using TALE nucleases and mimics a human mutation in an essential splice donor site of the col6a1 gene, causing an in-frame skipping of exon 14.

- · Progressive disorganization of the muscle
- Co-dominantly inherited abnormal myofibers
- Enlarged sarcoplasmic reticulum
- Hypoxia-response behavior (locomotion tests)
- Altered mitochondria
- Misaligned sarcomeres
- Development of fibrosis (* on C & F) Radev Z, et al. PLoS One. 2015 - F. Sohm's team

CELPHEDIA, a combination of expertise and skills

CRISPR/Cas9 system

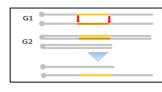
A wide range of expertise, skills and knowledge that is unique in Europe:


- multi-model scientific and technological approaches
- integrated comparative functional analyses
- a better cross-functionality of results from one model organism to another.

Mouse models and Rare Diseases

Rare Disease Foundation and PHENOMIN have launched 4 calls for joint research projects since 2013.

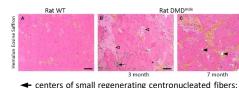
http://www.phenomin.fr/rare-diseases/


The rat to model human rare diseases

MRD7 syndrome

Clinical signs identified from 7 months to 7 years: microcephaly, growth delay, skeletal abnormalities, difficulty with nutrition, language delay, intellectual deficit, anxiety, aggressiveness, autism...

Y. Herault's team

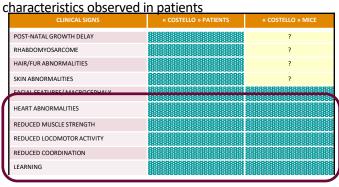


allele by CRISPR/Cas9

Duchenne myopathy

GA rats are deficient in dystrophin

Femoral biceps muscle collected at 3 and 7 months from WT control and DMD^{mdx} rats.



I. Aneaon's tear

The mouse to model human rare diseases

Costello syndrome: mouse HRAS G12S model reproduces most of the phenotypic

RTHα genetic disease: mutations in the THRA gene coding the thyroid hormone receptor TRα1 generating various phenotypes

Generation of GA mice by CRISPR/Cas9 targeting

F. Flamant's team, UMS3444/US8 SFR BioSciences, Lyon

Genome modification and creation of models

Design and generation of genetically altered (GA) models like humanized

mouse models, human pathology models, immunodeficient mice and

